# # The Python Imaging Library. # $Id$ # # TIFF file handling # # TIFF is a flexible, if somewhat aged, image file format originally # defined by Aldus. Although TIFF supports a wide variety of pixel # layouts and compression methods, the name doesn't really stand for # "thousands of incompatible file formats," it just feels that way. # # To read TIFF data from a stream, the stream must be seekable. For # progressive decoding, make sure to use TIFF files where the tag # directory is placed first in the file. # # History: # 1995-09-01 fl Created # 1996-05-04 fl Handle JPEGTABLES tag # 1996-05-18 fl Fixed COLORMAP support # 1997-01-05 fl Fixed PREDICTOR support # 1997-08-27 fl Added support for rational tags (from Perry Stoll) # 1998-01-10 fl Fixed seek/tell (from Jan Blom) # 1998-07-15 fl Use private names for internal variables # 1999-06-13 fl Rewritten for PIL 1.0 (1.0) # 2000-10-11 fl Additional fixes for Python 2.0 (1.1) # 2001-04-17 fl Fixed rewind support (seek to frame 0) (1.2) # 2001-05-12 fl Added write support for more tags (from Greg Couch) (1.3) # 2001-12-18 fl Added workaround for broken Matrox library # 2002-01-18 fl Don't mess up if photometric tag is missing (D. Alan Stewart) # 2003-05-19 fl Check FILLORDER tag # 2003-09-26 fl Added RGBa support # 2004-02-24 fl Added DPI support; fixed rational write support # 2005-02-07 fl Added workaround for broken Corel Draw 10 files # 2006-01-09 fl Added support for float/double tags (from Russell Nelson) # # Copyright (c) 1997-2006 by Secret Labs AB. All rights reserved. # Copyright (c) 1995-1997 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from __future__ import annotations import io import itertools import logging import math import os import struct import warnings from collections.abc import Iterator, MutableMapping from fractions import Fraction from numbers import Number, Rational from typing import IO, TYPE_CHECKING, Any, Callable, NoReturn, cast from . import ExifTags, Image, ImageFile, ImageOps, ImagePalette, TiffTags from ._binary import i16be as i16 from ._binary import i32be as i32 from ._binary import o8 from ._deprecate import deprecate from ._typing import StrOrBytesPath from ._util import is_path from .TiffTags import TYPES if TYPE_CHECKING: from ._typing import Buffer, IntegralLike logger = logging.getLogger(__name__) # Set these to true to force use of libtiff for reading or writing. READ_LIBTIFF = False WRITE_LIBTIFF = False STRIP_SIZE = 65536 II = b"II" # little-endian (Intel style) MM = b"MM" # big-endian (Motorola style) # # -------------------------------------------------------------------- # Read TIFF files # a few tag names, just to make the code below a bit more readable OSUBFILETYPE = 255 IMAGEWIDTH = 256 IMAGELENGTH = 257 BITSPERSAMPLE = 258 COMPRESSION = 259 PHOTOMETRIC_INTERPRETATION = 262 FILLORDER = 266 IMAGEDESCRIPTION = 270 STRIPOFFSETS = 273 SAMPLESPERPIXEL = 277 ROWSPERSTRIP = 278 STRIPBYTECOUNTS = 279 X_RESOLUTION = 282 Y_RESOLUTION = 283 PLANAR_CONFIGURATION = 284 RESOLUTION_UNIT = 296 TRANSFERFUNCTION = 301 SOFTWARE = 305 DATE_TIME = 306 ARTIST = 315 PREDICTOR = 317 COLORMAP = 320 TILEWIDTH = 322 TILELENGTH = 323 TILEOFFSETS = 324 TILEBYTECOUNTS = 325 SUBIFD = 330 EXTRASAMPLES = 338 SAMPLEFORMAT = 339 JPEGTABLES = 347 YCBCRSUBSAMPLING = 530 REFERENCEBLACKWHITE = 532 COPYRIGHT = 33432 IPTC_NAA_CHUNK = 33723 # newsphoto properties PHOTOSHOP_CHUNK = 34377 # photoshop properties ICCPROFILE = 34675 EXIFIFD = 34665 XMP = 700 JPEGQUALITY = 65537 # pseudo-tag by libtiff # https://github.com/imagej/ImageJA/blob/master/src/main/java/ij/io/TiffDecoder.java IMAGEJ_META_DATA_BYTE_COUNTS = 50838 IMAGEJ_META_DATA = 50839 COMPRESSION_INFO = { # Compression => pil compression name 1: "raw", 2: "tiff_ccitt", 3: "group3", 4: "group4", 5: "tiff_lzw", 6: "tiff_jpeg", # obsolete 7: "jpeg", 8: "tiff_adobe_deflate", 32771: "tiff_raw_16", # 16-bit padding 32773: "packbits", 32809: "tiff_thunderscan", 32946: "tiff_deflate", 34676: "tiff_sgilog", 34677: "tiff_sgilog24", 34925: "lzma", 50000: "zstd", 50001: "webp", } COMPRESSION_INFO_REV = {v: k for k, v in COMPRESSION_INFO.items()} OPEN_INFO = { # (ByteOrder, PhotoInterpretation, SampleFormat, FillOrder, BitsPerSample, # ExtraSamples) => mode, rawmode (II, 0, (1,), 1, (1,), ()): ("1", "1;I"), (MM, 0, (1,), 1, (1,), ()): ("1", "1;I"), (II, 0, (1,), 2, (1,), ()): ("1", "1;IR"), (MM, 0, (1,), 2, (1,), ()): ("1", "1;IR"), (II, 1, (1,), 1, (1,), ()): ("1", "1"), (MM, 1, (1,), 1, (1,), ()): ("1", "1"), (II, 1, (1,), 2, (1,), ()): ("1", "1;R"), (MM, 1, (1,), 2, (1,), ()): ("1", "1;R"), (II, 0, (1,), 1, (2,), ()): ("L", "L;2I"), (MM, 0, (1,), 1, (2,), ()): ("L", "L;2I"), (II, 0, (1,), 2, (2,), ()): ("L", "L;2IR"), (MM, 0, (1,), 2, (2,), ()): ("L", "L;2IR"), (II, 1, (1,), 1, (2,), ()): ("L", "L;2"), (MM, 1, (1,), 1, (2,), ()): ("L", "L;2"), (II, 1, (1,), 2, (2,), ()): ("L", "L;2R"), (MM, 1, (1,), 2, (2,), ()): ("L", "L;2R"), (II, 0, (1,), 1, (4,), ()): ("L", "L;4I"), (MM, 0, (1,), 1, (4,), ()): ("L", "L;4I"), (II, 0, (1,), 2, (4,), ()): ("L", "L;4IR"), (MM, 0, (1,), 2, (4,), ()): ("L", "L;4IR"), (II, 1, (1,), 1, (4,), ()): ("L", "L;4"), (MM, 1, (1,), 1, (4,), ()): ("L", "L;4"), (II, 1, (1,), 2, (4,), ()): ("L", "L;4R"), (MM, 1, (1,), 2, (4,), ()): ("L", "L;4R"), (II, 0, (1,), 1, (8,), ()): ("L", "L;I"), (MM, 0, (1,), 1, (8,), ()): ("L", "L;I"), (II, 0, (1,), 2, (8,), ()): ("L", "L;IR"), (MM, 0, (1,), 2, (8,), ()): ("L", "L;IR"), (II, 1, (1,), 1, (8,), ()): ("L", "L"), (MM, 1, (1,), 1, (8,), ()): ("L", "L"), (II, 1, (2,), 1, (8,), ()): ("L", "L"), (MM, 1, (2,), 1, (8,), ()): ("L", "L"), (II, 1, (1,), 2, (8,), ()): ("L", "L;R"), (MM, 1, (1,), 2, (8,), ()): ("L", "L;R"), (II, 1, (1,), 1, (12,), ()): ("I;16", "I;12"), (II, 0, (1,), 1, (16,), ()): ("I;16", "I;16"), (II, 1, (1,), 1, (16,), ()): ("I;16", "I;16"), (MM, 1, (1,), 1, (16,), ()): ("I;16B", "I;16B"), (II, 1, (1,), 2, (16,), ()): ("I;16", "I;16R"), (II, 1, (2,), 1, (16,), ()): ("I", "I;16S"), (MM, 1, (2,), 1, (16,), ()): ("I", "I;16BS"), (II, 0, (3,), 1, (32,), ()): ("F", "F;32F"), (MM, 0, (3,), 1, (32,), ()): ("F", "F;32BF"), (II, 1, (1,), 1, (32,), ()): ("I", "I;32N"), (II, 1, (2,), 1, (32,), ()): ("I", "I;32S"), (MM, 1, (2,), 1, (32,), ()): ("I", "I;32BS"), (II, 1, (3,), 1, (32,), ()): ("F", "F;32F"), (MM, 1, (3,), 1, (32,), ()): ("F", "F;32BF"), (II, 1, (1,), 1, (8, 8), (2,)): ("LA", "LA"), (MM, 1, (1,), 1, (8, 8), (2,)): ("LA", "LA"), (II, 2, (1,), 1, (8, 8, 8), ()): ("RGB", "RGB"), (MM, 2, (1,), 1, (8, 8, 8), ()): ("RGB", "RGB"), (II, 2, (1,), 2, (8, 8, 8), ()): ("RGB", "RGB;R"), (MM, 2, (1,), 2, (8, 8, 8), ()): ("RGB", "RGB;R"), (II, 2, (1,), 1, (8, 8, 8, 8), ()): ("RGBA", "RGBA"), # missing ExtraSamples (MM, 2, (1,), 1, (8, 8, 8, 8), ()): ("RGBA", "RGBA"), # missing ExtraSamples (II, 2, (1,), 1, (8, 8, 8, 8), (0,)): ("RGB", "RGBX"), (MM, 2, (1,), 1, (8, 8, 8, 8), (0,)): ("RGB", "RGBX"), (II, 2, (1,), 1, (8, 8, 8, 8, 8), (0, 0)): ("RGB", "RGBXX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8), (0, 0)): ("RGB", "RGBXX"), (II, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (0, 0, 0)): ("RGB", "RGBXXX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (0, 0, 0)): ("RGB", "RGBXXX"), (II, 2, (1,), 1, (8, 8, 8, 8), (1,)): ("RGBA", "RGBa"), (MM, 2, (1,), 1, (8, 8, 8, 8), (1,)): ("RGBA", "RGBa"), (II, 2, (1,), 1, (8, 8, 8, 8, 8), (1, 0)): ("RGBA", "RGBaX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8), (1, 0)): ("RGBA", "RGBaX"), (II, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (1, 0, 0)): ("RGBA", "RGBaXX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (1, 0, 0)): ("RGBA", "RGBaXX"), (II, 2, (1,), 1, (8, 8, 8, 8), (2,)): ("RGBA", "RGBA"), (MM, 2, (1,), 1, (8, 8, 8, 8), (2,)): ("RGBA", "RGBA"), (II, 2, (1,), 1, (8, 8, 8, 8, 8), (2, 0)): ("RGBA", "RGBAX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8), (2, 0)): ("RGBA", "RGBAX"), (II, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (2, 0, 0)): ("RGBA", "RGBAXX"), (MM, 2, (1,), 1, (8, 8, 8, 8, 8, 8), (2, 0, 0)): ("RGBA", "RGBAXX"), (II, 2, (1,), 1, (8, 8, 8, 8), (999,)): ("RGBA", "RGBA"), # Corel Draw 10 (MM, 2, (1,), 1, (8, 8, 8, 8), (999,)): ("RGBA", "RGBA"), # Corel Draw 10 (II, 2, (1,), 1, (16, 16, 16), ()): ("RGB", "RGB;16L"), (MM, 2, (1,), 1, (16, 16, 16), ()): ("RGB", "RGB;16B"), (II, 2, (1,), 1, (16, 16, 16, 16), ()): ("RGBA", "RGBA;16L"), (MM, 2, (1,), 1, (16, 16, 16, 16), ()): ("RGBA", "RGBA;16B"), (II, 2, (1,), 1, (16, 16, 16, 16), (0,)): ("RGB", "RGBX;16L"), (MM, 2, (1,), 1, (16, 16, 16, 16), (0,)): ("RGB", "RGBX;16B"), (II, 2, (1,), 1, (16, 16, 16, 16), (1,)): ("RGBA", "RGBa;16L"), (MM, 2, (1,), 1, (16, 16, 16, 16), (1,)): ("RGBA", "RGBa;16B"), (II, 2, (1,), 1, (16, 16, 16, 16), (2,)): ("RGBA", "RGBA;16L"), (MM, 2, (1,), 1, (16, 16, 16, 16), (2,)): ("RGBA", "RGBA;16B"), (II, 3, (1,), 1, (1,), ()): ("P", "P;1"), (MM, 3, (1,), 1, (1,), ()): ("P", "P;1"), (II, 3, (1,), 2, (1,), ()): ("P", "P;1R"), (MM, 3, (1,), 2, (1,), ()): ("P", "P;1R"), (II, 3, (1,), 1, (2,), ()): ("P", "P;2"), (MM, 3, (1,), 1, (2,), ()): ("P", "P;2"), (II, 3, (1,), 2, (2,), ()): ("P", "P;2R"), (MM, 3, (1,), 2, (2,), ()): ("P", "P;2R"), (II, 3, (1,), 1, (4,), ()): ("P", "P;4"), (MM, 3, (1,), 1, (4,), ()): ("P", "P;4"), (II, 3, (1,), 2, (4,), ()): ("P", "P;4R"), (MM, 3, (1,), 2, (4,), ()): ("P", "P;4R"), (II, 3, (1,), 1, (8,), ()): ("P", "P"), (MM, 3, (1,), 1, (8,), ()): ("P", "P"), (II, 3, (1,), 1, (8, 8), (0,)): ("P", "PX"), (II, 3, (1,), 1, (8, 8), (2,)): ("PA", "PA"), (MM, 3, (1,), 1, (8, 8), (2,)): ("PA", "PA"), (II, 3, (1,), 2, (8,), ()): ("P", "P;R"), (MM, 3, (1,), 2, (8,), ()): ("P", "P;R"), (II, 5, (1,), 1, (8, 8, 8, 8), ()): ("CMYK", "CMYK"), (MM, 5, (1,), 1, (8, 8, 8, 8), ()): ("CMYK", "CMYK"), (II, 5, (1,), 1, (8, 8, 8, 8, 8), (0,)): ("CMYK", "CMYKX"), (MM, 5, (1,), 1, (8, 8, 8, 8, 8), (0,)): ("CMYK", "CMYKX"), (II, 5, (1,), 1, (8, 8, 8, 8, 8, 8), (0, 0)): ("CMYK", "CMYKXX"), (MM, 5, (1,), 1, (8, 8, 8, 8, 8, 8), (0, 0)): ("CMYK", "CMYKXX"), (II, 5, (1,), 1, (16, 16, 16, 16), ()): ("CMYK", "CMYK;16L"), (MM, 5, (1,), 1, (16, 16, 16, 16), ()): ("CMYK", "CMYK;16B"), (II, 6, (1,), 1, (8,), ()): ("L", "L"), (MM, 6, (1,), 1, (8,), ()): ("L", "L"), # JPEG compressed images handled by LibTiff and auto-converted to RGBX # Minimal Baseline TIFF requires YCbCr images to have 3 SamplesPerPixel (II, 6, (1,), 1, (8, 8, 8), ()): ("RGB", "RGBX"), (MM, 6, (1,), 1, (8, 8, 8), ()): ("RGB", "RGBX"), (II, 8, (1,), 1, (8, 8, 8), ()): ("LAB", "LAB"), (MM, 8, (1,), 1, (8, 8, 8), ()): ("LAB", "LAB"), } MAX_SAMPLESPERPIXEL = max(len(key_tp[4]) for key_tp in OPEN_INFO) PREFIXES = [ b"MM\x00\x2A", # Valid TIFF header with big-endian byte order b"II\x2A\x00", # Valid TIFF header with little-endian byte order b"MM\x2A\x00", # Invalid TIFF header, assume big-endian b"II\x00\x2A", # Invalid TIFF header, assume little-endian b"MM\x00\x2B", # BigTIFF with big-endian byte order b"II\x2B\x00", # BigTIFF with little-endian byte order ] if not getattr(Image.core, "libtiff_support_custom_tags", True): deprecate("Support for LibTIFF earlier than version 4", 12) def _accept(prefix: bytes) -> bool: return prefix[:4] in PREFIXES def _limit_rational( val: float | Fraction | IFDRational, max_val: int ) -> tuple[IntegralLike, IntegralLike]: inv = abs(float(val)) > 1 n_d = IFDRational(1 / val if inv else val).limit_rational(max_val) return n_d[::-1] if inv else n_d def _limit_signed_rational( val: IFDRational, max_val: int, min_val: int ) -> tuple[IntegralLike, IntegralLike]: frac = Fraction(val) n_d: tuple[IntegralLike, IntegralLike] = frac.numerator, frac.denominator if min(float(i) for i in n_d) < min_val: n_d = _limit_rational(val, abs(min_val)) n_d_float = tuple(float(i) for i in n_d) if max(n_d_float) > max_val: n_d = _limit_rational(n_d_float[0] / n_d_float[1], max_val) return n_d ## # Wrapper for TIFF IFDs. _load_dispatch = {} _write_dispatch = {} def _delegate(op: str) -> Any: def delegate( self: IFDRational, *args: tuple[float, ...] ) -> bool | float | Fraction: return getattr(self._val, op)(*args) return delegate class IFDRational(Rational): """Implements a rational class where 0/0 is a legal value to match the in the wild use of exif rationals. e.g., DigitalZoomRatio - 0.00/0.00 indicates that no digital zoom was used """ """ If the denominator is 0, store this as a float('nan'), otherwise store as a fractions.Fraction(). Delegate as appropriate """ __slots__ = ("_numerator", "_denominator", "_val") def __init__( self, value: float | Fraction | IFDRational, denominator: int = 1 ) -> None: """ :param value: either an integer numerator, a float/rational/other number, or an IFDRational :param denominator: Optional integer denominator """ self._val: Fraction | float if isinstance(value, IFDRational): self._numerator = value.numerator self._denominator = value.denominator self._val = value._val return if isinstance(value, Fraction): self._numerator = value.numerator self._denominator = value.denominator else: if TYPE_CHECKING: self._numerator = cast(IntegralLike, value) else: self._numerator = value self._denominator = denominator if denominator == 0: self._val = float("nan") elif denominator == 1: self._val = Fraction(value) elif int(value) == value: self._val = Fraction(int(value), denominator) else: self._val = Fraction(value / denominator) @property def numerator(self) -> IntegralLike: return self._numerator @property def denominator(self) -> int: return self._denominator def limit_rational(self, max_denominator: int) -> tuple[IntegralLike, int]: """ :param max_denominator: Integer, the maximum denominator value :returns: Tuple of (numerator, denominator) """ if self.denominator == 0: return self.numerator, self.denominator assert isinstance(self._val, Fraction) f = self._val.limit_denominator(max_denominator) return f.numerator, f.denominator def __repr__(self) -> str: return str(float(self._val)) def __hash__(self) -> int: return self._val.__hash__() def __eq__(self, other: object) -> bool: val = self._val if isinstance(other, IFDRational): other = other._val if isinstance(other, float): val = float(val) return val == other def __getstate__(self) -> list[float | Fraction | IntegralLike]: return [self._val, self._numerator, self._denominator] def __setstate__(self, state: list[float | Fraction | IntegralLike]) -> None: IFDRational.__init__(self, 0) _val, _numerator, _denominator = state assert isinstance(_val, (float, Fraction)) self._val = _val if TYPE_CHECKING: self._numerator = cast(IntegralLike, _numerator) else: self._numerator = _numerator assert isinstance(_denominator, int) self._denominator = _denominator """ a = ['add','radd', 'sub', 'rsub', 'mul', 'rmul', 'truediv', 'rtruediv', 'floordiv', 'rfloordiv', 'mod','rmod', 'pow','rpow', 'pos', 'neg', 'abs', 'trunc', 'lt', 'gt', 'le', 'ge', 'bool', 'ceil', 'floor', 'round'] print("\n".join("__%s__ = _delegate('__%s__')" % (s,s) for s in a)) """ __add__ = _delegate("__add__") __radd__ = _delegate("__radd__") __sub__ = _delegate("__sub__") __rsub__ = _delegate("__rsub__") __mul__ = _delegate("__mul__") __rmul__ = _delegate("__rmul__") __truediv__ = _delegate("__truediv__") __rtruediv__ = _delegate("__rtruediv__") __floordiv__ = _delegate("__floordiv__") __rfloordiv__ = _delegate("__rfloordiv__") __mod__ = _delegate("__mod__") __rmod__ = _delegate("__rmod__") __pow__ = _delegate("__pow__") __rpow__ = _delegate("__rpow__") __pos__ = _delegate("__pos__") __neg__ = _delegate("__neg__") __abs__ = _delegate("__abs__") __trunc__ = _delegate("__trunc__") __lt__ = _delegate("__lt__") __gt__ = _delegate("__gt__") __le__ = _delegate("__le__") __ge__ = _delegate("__ge__") __bool__ = _delegate("__bool__") __ceil__ = _delegate("__ceil__") __floor__ = _delegate("__floor__") __round__ = _delegate("__round__") # Python >= 3.11 if hasattr(Fraction, "__int__"): __int__ = _delegate("__int__") _LoaderFunc = Callable[["ImageFileDirectory_v2", bytes, bool], Any] def _register_loader(idx: int, size: int) -> Callable[[_LoaderFunc], _LoaderFunc]: def decorator(func: _LoaderFunc) -> _LoaderFunc: from .TiffTags import TYPES if func.__name__.startswith("load_"): TYPES[idx] = func.__name__[5:].replace("_", " ") _load_dispatch[idx] = size, func # noqa: F821 return func return decorator def _register_writer(idx: int) -> Callable[[Callable[..., Any]], Callable[..., Any]]: def decorator(func: Callable[..., Any]) -> Callable[..., Any]: _write_dispatch[idx] = func # noqa: F821 return func return decorator def _register_basic(idx_fmt_name: tuple[int, str, str]) -> None: from .TiffTags import TYPES idx, fmt, name = idx_fmt_name TYPES[idx] = name size = struct.calcsize(f"={fmt}") def basic_handler( self: ImageFileDirectory_v2, data: bytes, legacy_api: bool = True ) -> tuple[Any, ...]: return self._unpack(f"{len(data) // size}{fmt}", data) _load_dispatch[idx] = size, basic_handler # noqa: F821 _write_dispatch[idx] = lambda self, *values: ( # noqa: F821 b"".join(self._pack(fmt, value) for value in values) ) if TYPE_CHECKING: _IFDv2Base = MutableMapping[int, Any] else: _IFDv2Base = MutableMapping class ImageFileDirectory_v2(_IFDv2Base): """This class represents a TIFF tag directory. To speed things up, we don't decode tags unless they're asked for. Exposes a dictionary interface of the tags in the directory:: ifd = ImageFileDirectory_v2() ifd[key] = 'Some Data' ifd.tagtype[key] = TiffTags.ASCII print(ifd[key]) 'Some Data' Individual values are returned as the strings or numbers, sequences are returned as tuples of the values. The tiff metadata type of each item is stored in a dictionary of tag types in :attr:`~PIL.TiffImagePlugin.ImageFileDirectory_v2.tagtype`. The types are read from a tiff file, guessed from the type added, or added manually. Data Structures: * ``self.tagtype = {}`` * Key: numerical TIFF tag number * Value: integer corresponding to the data type from :py:data:`.TiffTags.TYPES` .. versionadded:: 3.0.0 'Internal' data structures: * ``self._tags_v2 = {}`` * Key: numerical TIFF tag number * Value: decoded data, as tuple for multiple values * ``self._tagdata = {}`` * Key: numerical TIFF tag number * Value: undecoded byte string from file * ``self._tags_v1 = {}`` * Key: numerical TIFF tag number * Value: decoded data in the v1 format Tags will be found in the private attributes ``self._tagdata``, and in ``self._tags_v2`` once decoded. ``self.legacy_api`` is a value for internal use, and shouldn't be changed from outside code. In cooperation with :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v1`, if ``legacy_api`` is true, then decoded tags will be populated into both ``_tags_v1`` and ``_tags_v2``. ``_tags_v2`` will be used if this IFD is used in the TIFF save routine. Tags should be read from ``_tags_v1`` if ``legacy_api == true``. """ _load_dispatch: dict[int, tuple[int, _LoaderFunc]] = {} _write_dispatch: dict[int, Callable[..., Any]] = {} def __init__( self, ifh: bytes = b"II\052\0\0\0\0\0", prefix: bytes | None = None, group: int | None = None, ) -> None: """Initialize an ImageFileDirectory. To construct an ImageFileDirectory from a real file, pass the 8-byte magic header to the constructor. To only set the endianness, pass it as the 'prefix' keyword argument. :param ifh: One of the accepted magic headers (cf. PREFIXES); also sets endianness. :param prefix: Override the endianness of the file. """ if not _accept(ifh): msg = f"not a TIFF file (header {repr(ifh)} not valid)" raise SyntaxError(msg) self._prefix = prefix if prefix is not None else ifh[:2] if self._prefix == MM: self._endian = ">" elif self._prefix == II: self._endian = "<" else: msg = "not a TIFF IFD" raise SyntaxError(msg) self._bigtiff = ifh[2] == 43 self.group = group self.tagtype: dict[int, int] = {} """ Dictionary of tag types """ self.reset() self.next = ( self._unpack("Q", ifh[8:])[0] if self._bigtiff else self._unpack("L", ifh[4:])[0] ) self._legacy_api = False prefix = property(lambda self: self._prefix) offset = property(lambda self: self._offset) @property def legacy_api(self) -> bool: return self._legacy_api @legacy_api.setter def legacy_api(self, value: bool) -> NoReturn: msg = "Not allowing setting of legacy api" raise Exception(msg) def reset(self) -> None: self._tags_v1: dict[int, Any] = {} # will remain empty if legacy_api is false self._tags_v2: dict[int, Any] = {} # main tag storage self._tagdata: dict[int, bytes] = {} self.tagtype = {} # added 2008-06-05 by Florian Hoech self._next = None self._offset: int | None = None def __str__(self) -> str: return str(dict(self)) def named(self) -> dict[str, Any]: """ :returns: dict of name|key: value Returns the complete tag dictionary, with named tags where possible. """ return { TiffTags.lookup(code, self.group).name: value for code, value in self.items() } def __len__(self) -> int: return len(set(self._tagdata) | set(self._tags_v2)) def __getitem__(self, tag: int) -> Any: if tag not in self._tags_v2: # unpack on the fly data = self._tagdata[tag] typ = self.tagtype[tag] size, handler = self._load_dispatch[typ] self[tag] = handler(self, data, self.legacy_api) # check type val = self._tags_v2[tag] if self.legacy_api and not isinstance(val, (tuple, bytes)): val = (val,) return val def __contains__(self, tag: object) -> bool: return tag in self._tags_v2 or tag in self._tagdata def __setitem__(self, tag: int, value: Any) -> None: self._setitem(tag, value, self.legacy_api) def _setitem(self, tag: int, value: Any, legacy_api: bool) -> None: basetypes = (Number, bytes, str) info = TiffTags.lookup(tag, self.group) values = [value] if isinstance(value, basetypes) else value if tag not in self.tagtype: if info.type: self.tagtype[tag] = info.type else: self.tagtype[tag] = TiffTags.UNDEFINED if all(isinstance(v, IFDRational) for v in values): self.tagtype[tag] = ( TiffTags.RATIONAL if all(v >= 0 for v in values) else TiffTags.SIGNED_RATIONAL ) elif all(isinstance(v, int) for v in values): if all(0 <= v < 2**16 for v in values): self.tagtype[tag] = TiffTags.SHORT elif all(-(2**15) < v < 2**15 for v in values): self.tagtype[tag] = TiffTags.SIGNED_SHORT else: self.tagtype[tag] = ( TiffTags.LONG if all(v >= 0 for v in values) else TiffTags.SIGNED_LONG ) elif all(isinstance(v, float) for v in values): self.tagtype[tag] = TiffTags.DOUBLE elif all(isinstance(v, str) for v in values): self.tagtype[tag] = TiffTags.ASCII elif all(isinstance(v, bytes) for v in values): self.tagtype[tag] = TiffTags.BYTE if self.tagtype[tag] == TiffTags.UNDEFINED: values = [ v.encode("ascii", "replace") if isinstance(v, str) else v for v in values ] elif self.tagtype[tag] == TiffTags.RATIONAL: values = [float(v) if isinstance(v, int) else v for v in values] is_ifd = self.tagtype[tag] == TiffTags.LONG and isinstance(values, dict) if not is_ifd: values = tuple(info.cvt_enum(value) for value in values) dest = self._tags_v1 if legacy_api else self._tags_v2 # Three branches: # Spec'd length == 1, Actual length 1, store as element # Spec'd length == 1, Actual > 1, Warn and truncate. Formerly barfed. # No Spec, Actual length 1, Formerly (<4.2) returned a 1 element tuple. # Don't mess with the legacy api, since it's frozen. if not is_ifd and ( (info.length == 1) or self.tagtype[tag] == TiffTags.BYTE or (info.length is None and len(values) == 1 and not legacy_api) ): # Don't mess with the legacy api, since it's frozen. if legacy_api and self.tagtype[tag] in [ TiffTags.RATIONAL, TiffTags.SIGNED_RATIONAL, ]: # rationals values = (values,) try: (dest[tag],) = values except ValueError: # We've got a builtin tag with 1 expected entry warnings.warn( f"Metadata Warning, tag {tag} had too many entries: " f"{len(values)}, expected 1" ) dest[tag] = values[0] else: # Spec'd length > 1 or undefined # Unspec'd, and length > 1 dest[tag] = values def __delitem__(self, tag: int) -> None: self._tags_v2.pop(tag, None) self._tags_v1.pop(tag, None) self._tagdata.pop(tag, None) def __iter__(self) -> Iterator[int]: return iter(set(self._tagdata) | set(self._tags_v2)) def _unpack(self, fmt: str, data: bytes) -> tuple[Any, ...]: return struct.unpack(self._endian + fmt, data) def _pack(self, fmt: str, *values: Any) -> bytes: return struct.pack(self._endian + fmt, *values) list( map( _register_basic, [ (TiffTags.SHORT, "H", "short"), (TiffTags.LONG, "L", "long"), (TiffTags.SIGNED_BYTE, "b", "signed byte"), (TiffTags.SIGNED_SHORT, "h", "signed short"), (TiffTags.SIGNED_LONG, "l", "signed long"), (TiffTags.FLOAT, "f", "float"), (TiffTags.DOUBLE, "d", "double"), (TiffTags.IFD, "L", "long"), (TiffTags.LONG8, "Q", "long8"), ], ) ) @_register_loader(1, 1) # Basic type, except for the legacy API. def load_byte(self, data: bytes, legacy_api: bool = True) -> bytes: return data @_register_writer(1) # Basic type, except for the legacy API. def write_byte(self, data: bytes | int | IFDRational) -> bytes: if isinstance(data, IFDRational): data = int(data) if isinstance(data, int): data = bytes((data,)) return data @_register_loader(2, 1) def load_string(self, data: bytes, legacy_api: bool = True) -> str: if data.endswith(b"\0"): data = data[:-1] return data.decode("latin-1", "replace") @_register_writer(2) def write_string(self, value: str | bytes | int) -> bytes: # remerge of https://github.com/python-pillow/Pillow/pull/1416 if isinstance(value, int): value = str(value) if not isinstance(value, bytes): value = value.encode("ascii", "replace") return value + b"\0" @_register_loader(5, 8) def load_rational( self, data: bytes, legacy_api: bool = True ) -> tuple[tuple[int, int] | IFDRational, ...]: vals = self._unpack(f"{len(data) // 4}L", data) def combine(a: int, b: int) -> tuple[int, int] | IFDRational: return (a, b) if legacy_api else IFDRational(a, b) return tuple(combine(num, denom) for num, denom in zip(vals[::2], vals[1::2])) @_register_writer(5) def write_rational(self, *values: IFDRational) -> bytes: return b"".join( self._pack("2L", *_limit_rational(frac, 2**32 - 1)) for frac in values ) @_register_loader(7, 1) def load_undefined(self, data: bytes, legacy_api: bool = True) -> bytes: return data @_register_writer(7) def write_undefined(self, value: bytes | int | IFDRational) -> bytes: if isinstance(value, IFDRational): value = int(value) if isinstance(value, int): value = str(value).encode("ascii", "replace") return value @_register_loader(10, 8) def load_signed_rational( self, data: bytes, legacy_api: bool = True ) -> tuple[tuple[int, int] | IFDRational, ...]: vals = self._unpack(f"{len(data) // 4}l", data) def combine(a: int, b: int) -> tuple[int, int] | IFDRational: return (a, b) if legacy_api else IFDRational(a, b) return tuple(combine(num, denom) for num, denom in zip(vals[::2], vals[1::2])) @_register_writer(10) def write_signed_rational(self, *values: IFDRational) -> bytes: return b"".join( self._pack("2l", *_limit_signed_rational(frac, 2**31 - 1, -(2**31))) for frac in values ) def _ensure_read(self, fp: IO[bytes], size: int) -> bytes: ret = fp.read(size) if len(ret) != size: msg = ( "Corrupt EXIF data. " f"Expecting to read {size} bytes but only got {len(ret)}. " ) raise OSError(msg) return ret def load(self, fp: IO[bytes]) -> None: self.reset() self._offset = fp.tell() try: tag_count = ( self._unpack("Q", self._ensure_read(fp, 8)) if self._bigtiff else self._unpack("H", self._ensure_read(fp, 2)) )[0] for i in range(tag_count): tag, typ, count, data = ( self._unpack("HHQ8s", self._ensure_read(fp, 20)) if self._bigtiff else self._unpack("HHL4s", self._ensure_read(fp, 12)) ) tagname = TiffTags.lookup(tag, self.group).name typname = TYPES.get(typ, "unknown") msg = f"tag: {tagname} ({tag}) - type: {typname} ({typ})" try: unit_size, handler = self._load_dispatch[typ] except KeyError: logger.debug("%s - unsupported type %s", msg, typ) continue # ignore unsupported type size = count * unit_size if size > (8 if self._bigtiff else 4): here = fp.tell() (offset,) = self._unpack("Q" if self._bigtiff else "L", data) msg += f" Tag Location: {here} - Data Location: {offset}" fp.seek(offset) data = ImageFile._safe_read(fp, size) fp.seek(here) else: data = data[:size] if len(data) != size: warnings.warn( "Possibly corrupt EXIF data. " f"Expecting to read {size} bytes but only got {len(data)}." f" Skipping tag {tag}" ) logger.debug(msg) continue if not data: logger.debug(msg) continue self._tagdata[tag] = data self.tagtype[tag] = typ msg += " - value: " + ( "" % size if size > 32 else repr(data) ) logger.debug(msg) (self.next,) = ( self._unpack("Q", self._ensure_read(fp, 8)) if self._bigtiff else self._unpack("L", self._ensure_read(fp, 4)) ) except OSError as msg: warnings.warn(str(msg)) return def tobytes(self, offset: int = 0) -> bytes: # FIXME What about tagdata? result = self._pack("H", len(self._tags_v2)) entries: list[tuple[int, int, int, bytes, bytes]] = [] offset = offset + len(result) + len(self._tags_v2) * 12 + 4 stripoffsets = None # pass 1: convert tags to binary format # always write tags in ascending order for tag, value in sorted(self._tags_v2.items()): if tag == STRIPOFFSETS: stripoffsets = len(entries) typ = self.tagtype[tag] logger.debug("Tag %s, Type: %s, Value: %s", tag, typ, repr(value)) is_ifd = typ == TiffTags.LONG and isinstance(value, dict) if is_ifd: if self._endian == "<": ifh = b"II\x2A\x00\x08\x00\x00\x00" else: ifh = b"MM\x00\x2A\x00\x00\x00\x08" ifd = ImageFileDirectory_v2(ifh, group=tag) values = self._tags_v2[tag] for ifd_tag, ifd_value in values.items(): ifd[ifd_tag] = ifd_value data = ifd.tobytes(offset) else: values = value if isinstance(value, tuple) else (value,) data = self._write_dispatch[typ](self, *values) tagname = TiffTags.lookup(tag, self.group).name typname = "ifd" if is_ifd else TYPES.get(typ, "unknown") msg = f"save: {tagname} ({tag}) - type: {typname} ({typ})" msg += " - value: " + ( "" % len(data) if len(data) >= 16 else str(values) ) logger.debug(msg) # count is sum of lengths for string and arbitrary data if is_ifd: count = 1 elif typ in [TiffTags.BYTE, TiffTags.ASCII, TiffTags.UNDEFINED]: count = len(data) else: count = len(values) # figure out if data fits into the entry if len(data) <= 4: entries.append((tag, typ, count, data.ljust(4, b"\0"), b"")) else: entries.append((tag, typ, count, self._pack("L", offset), data)) offset += (len(data) + 1) // 2 * 2 # pad to word # update strip offset data to point beyond auxiliary data if stripoffsets is not None: tag, typ, count, value, data = entries[stripoffsets] if data: size, handler = self._load_dispatch[typ] values = [val + offset for val in handler(self, data, self.legacy_api)] data = self._write_dispatch[typ](self, *values) else: value = self._pack("L", self._unpack("L", value)[0] + offset) entries[stripoffsets] = tag, typ, count, value, data # pass 2: write entries to file for tag, typ, count, value, data in entries: logger.debug("%s %s %s %s %s", tag, typ, count, repr(value), repr(data)) result += self._pack("HHL4s", tag, typ, count, value) # -- overwrite here for multi-page -- result += b"\0\0\0\0" # end of entries # pass 3: write auxiliary data to file for tag, typ, count, value, data in entries: result += data if len(data) & 1: result += b"\0" return result def save(self, fp: IO[bytes]) -> int: if fp.tell() == 0: # skip TIFF header on subsequent pages # tiff header -- PIL always starts the first IFD at offset 8 fp.write(self._prefix + self._pack("HL", 42, 8)) offset = fp.tell() result = self.tobytes(offset) fp.write(result) return offset + len(result) ImageFileDirectory_v2._load_dispatch = _load_dispatch ImageFileDirectory_v2._write_dispatch = _write_dispatch for idx, name in TYPES.items(): name = name.replace(" ", "_") setattr(ImageFileDirectory_v2, f"load_{name}", _load_dispatch[idx][1]) setattr(ImageFileDirectory_v2, f"write_{name}", _write_dispatch[idx]) del _load_dispatch, _write_dispatch, idx, name # Legacy ImageFileDirectory support. class ImageFileDirectory_v1(ImageFileDirectory_v2): """This class represents the **legacy** interface to a TIFF tag directory. Exposes a dictionary interface of the tags in the directory:: ifd = ImageFileDirectory_v1() ifd[key] = 'Some Data' ifd.tagtype[key] = TiffTags.ASCII print(ifd[key]) ('Some Data',) Also contains a dictionary of tag types as read from the tiff image file, :attr:`~PIL.TiffImagePlugin.ImageFileDirectory_v1.tagtype`. Values are returned as a tuple. .. deprecated:: 3.0.0 """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self._legacy_api = True tags = property(lambda self: self._tags_v1) tagdata = property(lambda self: self._tagdata) # defined in ImageFileDirectory_v2 tagtype: dict[int, int] """Dictionary of tag types""" @classmethod def from_v2(cls, original: ImageFileDirectory_v2) -> ImageFileDirectory_v1: """Returns an :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v1` instance with the same data as is contained in the original :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v2` instance. :returns: :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v1` """ ifd = cls(prefix=original.prefix) ifd._tagdata = original._tagdata ifd.tagtype = original.tagtype ifd.next = original.next # an indicator for multipage tiffs return ifd def to_v2(self) -> ImageFileDirectory_v2: """Returns an :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v2` instance with the same data as is contained in the original :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v1` instance. :returns: :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v2` """ ifd = ImageFileDirectory_v2(prefix=self.prefix) ifd._tagdata = dict(self._tagdata) ifd.tagtype = dict(self.tagtype) ifd._tags_v2 = dict(self._tags_v2) return ifd def __contains__(self, tag: object) -> bool: return tag in self._tags_v1 or tag in self._tagdata def __len__(self) -> int: return len(set(self._tagdata) | set(self._tags_v1)) def __iter__(self) -> Iterator[int]: return iter(set(self._tagdata) | set(self._tags_v1)) def __setitem__(self, tag: int, value: Any) -> None: for legacy_api in (False, True): self._setitem(tag, value, legacy_api) def __getitem__(self, tag: int) -> Any: if tag not in self._tags_v1: # unpack on the fly data = self._tagdata[tag] typ = self.tagtype[tag] size, handler = self._load_dispatch[typ] for legacy in (False, True): self._setitem(tag, handler(self, data, legacy), legacy) val = self._tags_v1[tag] if not isinstance(val, (tuple, bytes)): val = (val,) return val # undone -- switch this pointer ImageFileDirectory = ImageFileDirectory_v1 ## # Image plugin for TIFF files. class TiffImageFile(ImageFile.ImageFile): format = "TIFF" format_description = "Adobe TIFF" _close_exclusive_fp_after_loading = False def __init__( self, fp: StrOrBytesPath | IO[bytes], filename: str | bytes | None = None, ) -> None: self.tag_v2: ImageFileDirectory_v2 """ Image file directory (tag dictionary) """ self.tag: ImageFileDirectory_v1 """ Legacy tag entries """ super().__init__(fp, filename) def _open(self) -> None: """Open the first image in a TIFF file""" # Header ifh = self.fp.read(8) if ifh[2] == 43: ifh += self.fp.read(8) self.tag_v2 = ImageFileDirectory_v2(ifh) # setup frame pointers self.__first = self.__next = self.tag_v2.next self.__frame = -1 self._fp = self.fp self._frame_pos: list[int] = [] self._n_frames: int | None = None logger.debug("*** TiffImageFile._open ***") logger.debug("- __first: %s", self.__first) logger.debug("- ifh: %s", repr(ifh)) # Use repr to avoid str(bytes) # and load the first frame self._seek(0) @property def n_frames(self) -> int: current_n_frames = self._n_frames if current_n_frames is None: current = self.tell() self._seek(len(self._frame_pos)) while self._n_frames is None: self._seek(self.tell() + 1) self.seek(current) assert self._n_frames is not None return self._n_frames def seek(self, frame: int) -> None: """Select a given frame as current image""" if not self._seek_check(frame): return self._seek(frame) if self._im is not None and ( self.im.size != self._tile_size or self.im.mode != self.mode ): # The core image will no longer be used self._im = None def _seek(self, frame: int) -> None: self.fp = self._fp # reset buffered io handle in case fp # was passed to libtiff, invalidating the buffer self.fp.tell() while len(self._frame_pos) <= frame: if not self.__next: msg = "no more images in TIFF file" raise EOFError(msg) logger.debug( "Seeking to frame %s, on frame %s, __next %s, location: %s", frame, self.__frame, self.__next, self.fp.tell(), ) if self.__next >= 2**63: msg = "Unable to seek to frame" raise ValueError(msg) self.fp.seek(self.__next) self._frame_pos.append(self.__next) logger.debug("Loading tags, location: %s", self.fp.tell()) self.tag_v2.load(self.fp) if self.tag_v2.next in self._frame_pos: # This IFD has already been processed # Declare this to be the end of the image self.__next = 0 else: self.__next = self.tag_v2.next if self.__next == 0: self._n_frames = frame + 1 if len(self._frame_pos) == 1: self.is_animated = self.__next != 0 self.__frame += 1 self.fp.seek(self._frame_pos[frame]) self.tag_v2.load(self.fp) if XMP in self.tag_v2: self.info["xmp"] = self.tag_v2[XMP] elif "xmp" in self.info: del self.info["xmp"] self._reload_exif() # fill the legacy tag/ifd entries self.tag = self.ifd = ImageFileDirectory_v1.from_v2(self.tag_v2) self.__frame = frame self._setup() def tell(self) -> int: """Return the current frame number""" return self.__frame def get_photoshop_blocks(self) -> dict[int, dict[str, bytes]]: """ Returns a dictionary of Photoshop "Image Resource Blocks". The keys are the image resource ID. For more information, see https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#50577409_pgfId-1037727 :returns: Photoshop "Image Resource Blocks" in a dictionary. """ blocks = {} val = self.tag_v2.get(ExifTags.Base.ImageResources) if val: while val[:4] == b"8BIM": id = i16(val[4:6]) n = math.ceil((val[6] + 1) / 2) * 2 size = i32(val[6 + n : 10 + n]) data = val[10 + n : 10 + n + size] blocks[id] = {"data": data} val = val[math.ceil((10 + n + size) / 2) * 2 :] return blocks def load(self) -> Image.core.PixelAccess | None: if self.tile and self.use_load_libtiff: return self._load_libtiff() return super().load() def load_prepare(self) -> None: if self._im is None: Image._decompression_bomb_check(self._tile_size) self.im = Image.core.new(self.mode, self._tile_size) ImageFile.ImageFile.load_prepare(self) def load_end(self) -> None: # allow closing if we're on the first frame, there's no next # This is the ImageFile.load path only, libtiff specific below. if not self.is_animated: self._close_exclusive_fp_after_loading = True # reset buffered io handle in case fp # was passed to libtiff, invalidating the buffer self.fp.tell() # load IFD data from fp before it is closed exif = self.getexif() for key in TiffTags.TAGS_V2_GROUPS: if key not in exif: continue exif.get_ifd(key) ImageOps.exif_transpose(self, in_place=True) if ExifTags.Base.Orientation in self.tag_v2: del self.tag_v2[ExifTags.Base.Orientation] def _load_libtiff(self) -> Image.core.PixelAccess | None: """Overload method triggered when we detect a compressed tiff Calls out to libtiff""" Image.Image.load(self) self.load_prepare() if not len(self.tile) == 1: msg = "Not exactly one tile" raise OSError(msg) # (self._compression, (extents tuple), # 0, (rawmode, self._compression, fp)) extents = self.tile[0][1] args = self.tile[0][3] # To be nice on memory footprint, if there's a # file descriptor, use that instead of reading # into a string in python. try: fp = hasattr(self.fp, "fileno") and self.fp.fileno() # flush the file descriptor, prevents error on pypy 2.4+ # should also eliminate the need for fp.tell # in _seek if hasattr(self.fp, "flush"): self.fp.flush() except OSError: # io.BytesIO have a fileno, but returns an OSError if # it doesn't use a file descriptor. fp = False if fp: assert isinstance(args, tuple) args_list = list(args) args_list[2] = fp args = tuple(args_list) decoder = Image._getdecoder(self.mode, "libtiff", args, self.decoderconfig) try: decoder.setimage(self.im, extents) except ValueError as e: msg = "Couldn't set the image" raise OSError(msg) from e close_self_fp = self._exclusive_fp and not self.is_animated if hasattr(self.fp, "getvalue"): # We've got a stringio like thing passed in. Yay for all in memory. # The decoder needs the entire file in one shot, so there's not # a lot we can do here other than give it the entire file. # unless we could do something like get the address of the # underlying string for stringio. # # Rearranging for supporting byteio items, since they have a fileno # that returns an OSError if there's no underlying fp. Easier to # deal with here by reordering. logger.debug("have getvalue. just sending in a string from getvalue") n, err = decoder.decode(self.fp.getvalue()) elif fp: # we've got a actual file on disk, pass in the fp. logger.debug("have fileno, calling fileno version of the decoder.") if not close_self_fp: self.fp.seek(0) # 4 bytes, otherwise the trace might error out n, err = decoder.decode(b"fpfp") else: # we have something else. logger.debug("don't have fileno or getvalue. just reading") self.fp.seek(0) # UNDONE -- so much for that buffer size thing. n, err = decoder.decode(self.fp.read()) self.tile = [] self.readonly = 0 self.load_end() if close_self_fp: self.fp.close() self.fp = None # might be shared if err < 0: raise OSError(err) return Image.Image.load(self) def _setup(self) -> None: """Setup this image object based on current tags""" if 0xBC01 in self.tag_v2: msg = "Windows Media Photo files not yet supported" raise OSError(msg) # extract relevant tags self._compression = COMPRESSION_INFO[self.tag_v2.get(COMPRESSION, 1)] self._planar_configuration = self.tag_v2.get(PLANAR_CONFIGURATION, 1) # photometric is a required tag, but not everyone is reading # the specification photo = self.tag_v2.get(PHOTOMETRIC_INTERPRETATION, 0) # old style jpeg compression images most certainly are YCbCr if self._compression == "tiff_jpeg": photo = 6 fillorder = self.tag_v2.get(FILLORDER, 1) logger.debug("*** Summary ***") logger.debug("- compression: %s", self._compression) logger.debug("- photometric_interpretation: %s", photo) logger.debug("- planar_configuration: %s", self._planar_configuration) logger.debug("- fill_order: %s", fillorder) logger.debug("- YCbCr subsampling: %s", self.tag_v2.get(YCBCRSUBSAMPLING)) # size xsize = self.tag_v2.get(IMAGEWIDTH) ysize = self.tag_v2.get(IMAGELENGTH) if not isinstance(xsize, int) or not isinstance(ysize, int): msg = "Invalid dimensions" raise ValueError(msg) self._tile_size = xsize, ysize orientation = self.tag_v2.get(ExifTags.Base.Orientation) if orientation in (5, 6, 7, 8): self._size = ysize, xsize else: self._size = xsize, ysize logger.debug("- size: %s", self.size) sample_format = self.tag_v2.get(SAMPLEFORMAT, (1,)) if len(sample_format) > 1 and max(sample_format) == min(sample_format) == 1: # SAMPLEFORMAT is properly per band, so an RGB image will # be (1,1,1). But, we don't support per band pixel types, # and anything more than one band is a uint8. So, just # take the first element. Revisit this if adding support # for more exotic images. sample_format = (1,) bps_tuple = self.tag_v2.get(BITSPERSAMPLE, (1,)) extra_tuple = self.tag_v2.get(EXTRASAMPLES, ()) if photo in (2, 6, 8): # RGB, YCbCr, LAB bps_count = 3 elif photo == 5: # CMYK bps_count = 4 else: bps_count = 1 bps_count += len(extra_tuple) bps_actual_count = len(bps_tuple) samples_per_pixel = self.tag_v2.get( SAMPLESPERPIXEL, 3 if self._compression == "tiff_jpeg" and photo in (2, 6) else 1, ) if samples_per_pixel > MAX_SAMPLESPERPIXEL: # DOS check, samples_per_pixel can be a Long, and we extend the tuple below logger.error( "More samples per pixel than can be decoded: %s", samples_per_pixel ) msg = "Invalid value for samples per pixel" raise SyntaxError(msg) if samples_per_pixel < bps_actual_count: # If a file has more values in bps_tuple than expected, # remove the excess. bps_tuple = bps_tuple[:samples_per_pixel] elif samples_per_pixel > bps_actual_count and bps_actual_count == 1: # If a file has only one value in bps_tuple, when it should have more, # presume it is the same number of bits for all of the samples. bps_tuple = bps_tuple * samples_per_pixel if len(bps_tuple) != samples_per_pixel: msg = "unknown data organization" raise SyntaxError(msg) # mode: check photometric interpretation and bits per pixel key = ( self.tag_v2.prefix, photo, sample_format, fillorder, bps_tuple, extra_tuple, ) logger.debug("format key: %s", key) try: self._mode, rawmode = OPEN_INFO[key] except KeyError as e: logger.debug("- unsupported format") msg = "unknown pixel mode" raise SyntaxError(msg) from e logger.debug("- raw mode: %s", rawmode) logger.debug("- pil mode: %s", self.mode) self.info["compression"] = self._compression xres = self.tag_v2.get(X_RESOLUTION, 1) yres = self.tag_v2.get(Y_RESOLUTION, 1) if xres and yres: resunit = self.tag_v2.get(RESOLUTION_UNIT) if resunit == 2: # dots per inch self.info["dpi"] = (xres, yres) elif resunit == 3: # dots per centimeter. convert to dpi self.info["dpi"] = (xres * 2.54, yres * 2.54) elif resunit is None: # used to default to 1, but now 2) self.info["dpi"] = (xres, yres) # For backward compatibility, # we also preserve the old behavior self.info["resolution"] = xres, yres else: # No absolute unit of measurement self.info["resolution"] = xres, yres # build tile descriptors x = y = layer = 0 self.tile = [] self.use_load_libtiff = READ_LIBTIFF or self._compression != "raw" if self.use_load_libtiff: # Decoder expects entire file as one tile. # There's a buffer size limit in load (64k) # so large g4 images will fail if we use that # function. # # Setup the one tile for the whole image, then # use the _load_libtiff function. # libtiff handles the fillmode for us, so 1;IR should # actually be 1;I. Including the R double reverses the # bits, so stripes of the image are reversed. See # https://github.com/python-pillow/Pillow/issues/279 if fillorder == 2: # Replace fillorder with fillorder=1 key = key[:3] + (1,) + key[4:] logger.debug("format key: %s", key) # this should always work, since all the # fillorder==2 modes have a corresponding # fillorder=1 mode self._mode, rawmode = OPEN_INFO[key] # libtiff always returns the bytes in native order. # we're expecting image byte order. So, if the rawmode # contains I;16, we need to convert from native to image # byte order. if rawmode == "I;16": rawmode = "I;16N" if ";16B" in rawmode: rawmode = rawmode.replace(";16B", ";16N") if ";16L" in rawmode: rawmode = rawmode.replace(";16L", ";16N") # YCbCr images with new jpeg compression with pixels in one plane # unpacked straight into RGB values if ( photo == 6 and self._compression == "jpeg" and self._planar_configuration == 1 ): rawmode = "RGB" # Offset in the tile tuple is 0, we go from 0,0 to # w,h, and we only do this once -- eds a = (rawmode, self._compression, False, self.tag_v2.offset) self.tile.append(ImageFile._Tile("libtiff", (0, 0, xsize, ysize), 0, a)) elif STRIPOFFSETS in self.tag_v2 or TILEOFFSETS in self.tag_v2: # striped image if STRIPOFFSETS in self.tag_v2: offsets = self.tag_v2[STRIPOFFSETS] h = self.tag_v2.get(ROWSPERSTRIP, ysize) w = xsize else: # tiled image offsets = self.tag_v2[TILEOFFSETS] tilewidth = self.tag_v2.get(TILEWIDTH) h = self.tag_v2.get(TILELENGTH) if not isinstance(tilewidth, int) or not isinstance(h, int): msg = "Invalid tile dimensions" raise ValueError(msg) w = tilewidth for offset in offsets: if x + w > xsize: stride = w * sum(bps_tuple) / 8 # bytes per line else: stride = 0 tile_rawmode = rawmode if self._planar_configuration == 2: # each band on it's own layer tile_rawmode = rawmode[layer] # adjust stride width accordingly stride /= bps_count args = (tile_rawmode, int(stride), 1) self.tile.append( ImageFile._Tile( self._compression, (x, y, min(x + w, xsize), min(y + h, ysize)), offset, args, ) ) x = x + w if x >= xsize: x, y = 0, y + h if y >= ysize: x = y = 0 layer += 1 else: logger.debug("- unsupported data organization") msg = "unknown data organization" raise SyntaxError(msg) # Fix up info. if ICCPROFILE in self.tag_v2: self.info["icc_profile"] = self.tag_v2[ICCPROFILE] # fixup palette descriptor if self.mode in ["P", "PA"]: palette = [o8(b // 256) for b in self.tag_v2[COLORMAP]] self.palette = ImagePalette.raw("RGB;L", b"".join(palette)) # # -------------------------------------------------------------------- # Write TIFF files # little endian is default except for image modes with # explicit big endian byte-order SAVE_INFO = { # mode => rawmode, byteorder, photometrics, # sampleformat, bitspersample, extra "1": ("1", II, 1, 1, (1,), None), "L": ("L", II, 1, 1, (8,), None), "LA": ("LA", II, 1, 1, (8, 8), 2), "P": ("P", II, 3, 1, (8,), None), "PA": ("PA", II, 3, 1, (8, 8), 2), "I": ("I;32S", II, 1, 2, (32,), None), "I;16": ("I;16", II, 1, 1, (16,), None), "I;16S": ("I;16S", II, 1, 2, (16,), None), "F": ("F;32F", II, 1, 3, (32,), None), "RGB": ("RGB", II, 2, 1, (8, 8, 8), None), "RGBX": ("RGBX", II, 2, 1, (8, 8, 8, 8), 0), "RGBA": ("RGBA", II, 2, 1, (8, 8, 8, 8), 2), "CMYK": ("CMYK", II, 5, 1, (8, 8, 8, 8), None), "YCbCr": ("YCbCr", II, 6, 1, (8, 8, 8), None), "LAB": ("LAB", II, 8, 1, (8, 8, 8), None), "I;32BS": ("I;32BS", MM, 1, 2, (32,), None), "I;16B": ("I;16B", MM, 1, 1, (16,), None), "I;16BS": ("I;16BS", MM, 1, 2, (16,), None), "F;32BF": ("F;32BF", MM, 1, 3, (32,), None), } def _save(im: Image.Image, fp: IO[bytes], filename: str | bytes) -> None: try: rawmode, prefix, photo, format, bits, extra = SAVE_INFO[im.mode] except KeyError as e: msg = f"cannot write mode {im.mode} as TIFF" raise OSError(msg) from e ifd = ImageFileDirectory_v2(prefix=prefix) encoderinfo = im.encoderinfo encoderconfig = im.encoderconfig try: compression = encoderinfo["compression"] except KeyError: compression = im.info.get("compression") if isinstance(compression, int): # compression value may be from BMP. Ignore it compression = None if compression is None: compression = "raw" elif compression == "tiff_jpeg": # OJPEG is obsolete, so use new-style JPEG compression instead compression = "jpeg" elif compression == "tiff_deflate": compression = "tiff_adobe_deflate" libtiff = WRITE_LIBTIFF or compression != "raw" # required for color libtiff images ifd[PLANAR_CONFIGURATION] = 1 ifd[IMAGEWIDTH] = im.size[0] ifd[IMAGELENGTH] = im.size[1] # write any arbitrary tags passed in as an ImageFileDirectory if "tiffinfo" in encoderinfo: info = encoderinfo["tiffinfo"] elif "exif" in encoderinfo: info = encoderinfo["exif"] if isinstance(info, bytes): exif = Image.Exif() exif.load(info) info = exif else: info = {} logger.debug("Tiffinfo Keys: %s", list(info)) if isinstance(info, ImageFileDirectory_v1): info = info.to_v2() for key in info: if isinstance(info, Image.Exif) and key in TiffTags.TAGS_V2_GROUPS: ifd[key] = info.get_ifd(key) else: ifd[key] = info.get(key) try: ifd.tagtype[key] = info.tagtype[key] except Exception: pass # might not be an IFD. Might not have populated type legacy_ifd = {} if hasattr(im, "tag"): legacy_ifd = im.tag.to_v2() supplied_tags = {**legacy_ifd, **getattr(im, "tag_v2", {})} for tag in ( # IFD offset that may not be correct in the saved image EXIFIFD, # Determined by the image format and should not be copied from legacy_ifd. SAMPLEFORMAT, ): if tag in supplied_tags: del supplied_tags[tag] # additions written by Greg Couch, gregc@cgl.ucsf.edu # inspired by image-sig posting from Kevin Cazabon, kcazabon@home.com if hasattr(im, "tag_v2"): # preserve tags from original TIFF image file for key in ( RESOLUTION_UNIT, X_RESOLUTION, Y_RESOLUTION, IPTC_NAA_CHUNK, PHOTOSHOP_CHUNK, XMP, ): if key in im.tag_v2: if key == IPTC_NAA_CHUNK and im.tag_v2.tagtype[key] not in ( TiffTags.BYTE, TiffTags.UNDEFINED, ): del supplied_tags[key] else: ifd[key] = im.tag_v2[key] ifd.tagtype[key] = im.tag_v2.tagtype[key] # preserve ICC profile (should also work when saving other formats # which support profiles as TIFF) -- 2008-06-06 Florian Hoech icc = encoderinfo.get("icc_profile", im.info.get("icc_profile")) if icc: ifd[ICCPROFILE] = icc for key, name in [ (IMAGEDESCRIPTION, "description"), (X_RESOLUTION, "resolution"), (Y_RESOLUTION, "resolution"), (X_RESOLUTION, "x_resolution"), (Y_RESOLUTION, "y_resolution"), (RESOLUTION_UNIT, "resolution_unit"), (SOFTWARE, "software"), (DATE_TIME, "date_time"), (ARTIST, "artist"), (COPYRIGHT, "copyright"), ]: if name in encoderinfo: ifd[key] = encoderinfo[name] dpi = encoderinfo.get("dpi") if dpi: ifd[RESOLUTION_UNIT] = 2 ifd[X_RESOLUTION] = dpi[0] ifd[Y_RESOLUTION] = dpi[1] if bits != (1,): ifd[BITSPERSAMPLE] = bits if len(bits) != 1: ifd[SAMPLESPERPIXEL] = len(bits) if extra is not None: ifd[EXTRASAMPLES] = extra if format != 1: ifd[SAMPLEFORMAT] = format if PHOTOMETRIC_INTERPRETATION not in ifd: ifd[PHOTOMETRIC_INTERPRETATION] = photo elif im.mode in ("1", "L") and ifd[PHOTOMETRIC_INTERPRETATION] == 0: if im.mode == "1": inverted_im = im.copy() px = inverted_im.load() if px is not None: for y in range(inverted_im.height): for x in range(inverted_im.width): px[x, y] = 0 if px[x, y] == 255 else 255 im = inverted_im else: im = ImageOps.invert(im) if im.mode in ["P", "PA"]: lut = im.im.getpalette("RGB", "RGB;L") colormap = [] colors = len(lut) // 3 for i in range(3): colormap += [v * 256 for v in lut[colors * i : colors * (i + 1)]] colormap += [0] * (256 - colors) ifd[COLORMAP] = colormap # data orientation w, h = ifd[IMAGEWIDTH], ifd[IMAGELENGTH] stride = len(bits) * ((w * bits[0] + 7) // 8) if ROWSPERSTRIP not in ifd: # aim for given strip size (64 KB by default) when using libtiff writer if libtiff: im_strip_size = encoderinfo.get("strip_size", STRIP_SIZE) rows_per_strip = 1 if stride == 0 else min(im_strip_size // stride, h) # JPEG encoder expects multiple of 8 rows if compression == "jpeg": rows_per_strip = min(((rows_per_strip + 7) // 8) * 8, h) else: rows_per_strip = h if rows_per_strip == 0: rows_per_strip = 1 ifd[ROWSPERSTRIP] = rows_per_strip strip_byte_counts = 1 if stride == 0 else stride * ifd[ROWSPERSTRIP] strips_per_image = (h + ifd[ROWSPERSTRIP] - 1) // ifd[ROWSPERSTRIP] if strip_byte_counts >= 2**16: ifd.tagtype[STRIPBYTECOUNTS] = TiffTags.LONG ifd[STRIPBYTECOUNTS] = (strip_byte_counts,) * (strips_per_image - 1) + ( stride * h - strip_byte_counts * (strips_per_image - 1), ) ifd[STRIPOFFSETS] = tuple( range(0, strip_byte_counts * strips_per_image, strip_byte_counts) ) # this is adjusted by IFD writer # no compression by default: ifd[COMPRESSION] = COMPRESSION_INFO_REV.get(compression, 1) if im.mode == "YCbCr": for tag, default_value in { YCBCRSUBSAMPLING: (1, 1), REFERENCEBLACKWHITE: (0, 255, 128, 255, 128, 255), }.items(): ifd.setdefault(tag, default_value) blocklist = [TILEWIDTH, TILELENGTH, TILEOFFSETS, TILEBYTECOUNTS] if libtiff: if "quality" in encoderinfo: quality = encoderinfo["quality"] if not isinstance(quality, int) or quality < 0 or quality > 100: msg = "Invalid quality setting" raise ValueError(msg) if compression != "jpeg": msg = "quality setting only supported for 'jpeg' compression" raise ValueError(msg) ifd[JPEGQUALITY] = quality logger.debug("Saving using libtiff encoder") logger.debug("Items: %s", sorted(ifd.items())) _fp = 0 if hasattr(fp, "fileno"): try: fp.seek(0) _fp = fp.fileno() except io.UnsupportedOperation: pass # optional types for non core tags types = {} # STRIPOFFSETS and STRIPBYTECOUNTS are added by the library # based on the data in the strip. # OSUBFILETYPE is deprecated. # The other tags expect arrays with a certain length (fixed or depending on # BITSPERSAMPLE, etc), passing arrays with a different length will result in # segfaults. Block these tags until we add extra validation. # SUBIFD may also cause a segfault. blocklist += [ OSUBFILETYPE, REFERENCEBLACKWHITE, STRIPBYTECOUNTS, STRIPOFFSETS, TRANSFERFUNCTION, SUBIFD, ] # bits per sample is a single short in the tiff directory, not a list. atts: dict[int, Any] = {BITSPERSAMPLE: bits[0]} # Merge the ones that we have with (optional) more bits from # the original file, e.g x,y resolution so that we can # save(load('')) == original file. for tag, value in itertools.chain(ifd.items(), supplied_tags.items()): # Libtiff can only process certain core items without adding # them to the custom dictionary. # Custom items are supported for int, float, unicode, string and byte # values. Other types and tuples require a tagtype. if tag not in TiffTags.LIBTIFF_CORE: if not getattr(Image.core, "libtiff_support_custom_tags", False): continue if tag in ifd.tagtype: types[tag] = ifd.tagtype[tag] elif not (isinstance(value, (int, float, str, bytes))): continue else: type = TiffTags.lookup(tag).type if type: types[tag] = type if tag not in atts and tag not in blocklist: if isinstance(value, str): atts[tag] = value.encode("ascii", "replace") + b"\0" elif isinstance(value, IFDRational): atts[tag] = float(value) else: atts[tag] = value if SAMPLEFORMAT in atts and len(atts[SAMPLEFORMAT]) == 1: atts[SAMPLEFORMAT] = atts[SAMPLEFORMAT][0] logger.debug("Converted items: %s", sorted(atts.items())) # libtiff always expects the bytes in native order. # we're storing image byte order. So, if the rawmode # contains I;16, we need to convert from native to image # byte order. if im.mode in ("I;16B", "I;16"): rawmode = "I;16N" # Pass tags as sorted list so that the tags are set in a fixed order. # This is required by libtiff for some tags. For example, the JPEGQUALITY # pseudo tag requires that the COMPRESS tag was already set. tags = list(atts.items()) tags.sort() a = (rawmode, compression, _fp, filename, tags, types) encoder = Image._getencoder(im.mode, "libtiff", a, encoderconfig) encoder.setimage(im.im, (0, 0) + im.size) while True: errcode, data = encoder.encode(ImageFile.MAXBLOCK)[1:] if not _fp: fp.write(data) if errcode: break if errcode < 0: msg = f"encoder error {errcode} when writing image file" raise OSError(msg) else: for tag in blocklist: del ifd[tag] offset = ifd.save(fp) ImageFile._save( im, fp, [ImageFile._Tile("raw", (0, 0) + im.size, offset, (rawmode, stride, 1))], ) # -- helper for multi-page save -- if "_debug_multipage" in encoderinfo: # just to access o32 and o16 (using correct byte order) setattr(im, "_debug_multipage", ifd) class AppendingTiffWriter(io.BytesIO): fieldSizes = [ 0, # None 1, # byte 1, # ascii 2, # short 4, # long 8, # rational 1, # sbyte 1, # undefined 2, # sshort 4, # slong 8, # srational 4, # float 8, # double 4, # ifd 2, # unicode 4, # complex 8, # long8 ] Tags = { 273, # StripOffsets 288, # FreeOffsets 324, # TileOffsets 519, # JPEGQTables 520, # JPEGDCTables 521, # JPEGACTables } def __init__(self, fn: StrOrBytesPath | IO[bytes], new: bool = False) -> None: self.f: IO[bytes] if is_path(fn): self.name = fn self.close_fp = True try: self.f = open(fn, "w+b" if new else "r+b") except OSError: self.f = open(fn, "w+b") else: self.f = cast(IO[bytes], fn) self.close_fp = False self.beginning = self.f.tell() self.setup() def setup(self) -> None: # Reset everything. self.f.seek(self.beginning, os.SEEK_SET) self.whereToWriteNewIFDOffset: int | None = None self.offsetOfNewPage = 0 self.IIMM = iimm = self.f.read(4) if not iimm: # empty file - first page self.isFirst = True return self.isFirst = False if iimm == b"II\x2a\x00": self.setEndian("<") elif iimm == b"MM\x00\x2a": self.setEndian(">") else: msg = "Invalid TIFF file header" raise RuntimeError(msg) self.skipIFDs() self.goToEnd() def finalize(self) -> None: if self.isFirst: return # fix offsets self.f.seek(self.offsetOfNewPage) iimm = self.f.read(4) if not iimm: # Make it easy to finish a frame without committing to a new one. return if iimm != self.IIMM: msg = "IIMM of new page doesn't match IIMM of first page" raise RuntimeError(msg) ifd_offset = self.readLong() ifd_offset += self.offsetOfNewPage assert self.whereToWriteNewIFDOffset is not None self.f.seek(self.whereToWriteNewIFDOffset) self.writeLong(ifd_offset) self.f.seek(ifd_offset) self.fixIFD() def newFrame(self) -> None: # Call this to finish a frame. self.finalize() self.setup() def __enter__(self) -> AppendingTiffWriter: return self def __exit__(self, *args: object) -> None: if self.close_fp: self.close() def tell(self) -> int: return self.f.tell() - self.offsetOfNewPage def seek(self, offset: int, whence: int = io.SEEK_SET) -> int: """ :param offset: Distance to seek. :param whence: Whether the distance is relative to the start, end or current position. :returns: The resulting position, relative to the start. """ if whence == os.SEEK_SET: offset += self.offsetOfNewPage self.f.seek(offset, whence) return self.tell() def goToEnd(self) -> None: self.f.seek(0, os.SEEK_END) pos = self.f.tell() # pad to 16 byte boundary pad_bytes = 16 - pos % 16 if 0 < pad_bytes < 16: self.f.write(bytes(pad_bytes)) self.offsetOfNewPage = self.f.tell() def setEndian(self, endian: str) -> None: self.endian = endian self.longFmt = f"{self.endian}L" self.shortFmt = f"{self.endian}H" self.tagFormat = f"{self.endian}HHL" def skipIFDs(self) -> None: while True: ifd_offset = self.readLong() if ifd_offset == 0: self.whereToWriteNewIFDOffset = self.f.tell() - 4 break self.f.seek(ifd_offset) num_tags = self.readShort() self.f.seek(num_tags * 12, os.SEEK_CUR) def write(self, data: Buffer, /) -> int: return self.f.write(data) def _fmt(self, field_size: int) -> str: try: return {2: "H", 4: "L", 8: "Q"}[field_size] except KeyError: msg = "offset is not supported" raise RuntimeError(msg) def _read(self, field_size: int) -> int: (value,) = struct.unpack( self.endian + self._fmt(field_size), self.f.read(field_size) ) return value def readShort(self) -> int: return self._read(2) def readLong(self) -> int: return self._read(4) @staticmethod def _verify_bytes_written(bytes_written: int | None, expected: int) -> None: if bytes_written is not None and bytes_written != expected: msg = f"wrote only {bytes_written} bytes but wanted {expected}" raise RuntimeError(msg) def rewriteLastShortToLong(self, value: int) -> None: self.f.seek(-2, os.SEEK_CUR) bytes_written = self.f.write(struct.pack(self.longFmt, value)) self._verify_bytes_written(bytes_written, 4) def _rewriteLast(self, value: int, field_size: int) -> None: self.f.seek(-field_size, os.SEEK_CUR) bytes_written = self.f.write( struct.pack(self.endian + self._fmt(field_size), value) ) self._verify_bytes_written(bytes_written, field_size) def rewriteLastShort(self, value: int) -> None: return self._rewriteLast(value, 2) def rewriteLastLong(self, value: int) -> None: return self._rewriteLast(value, 4) def writeShort(self, value: int) -> None: bytes_written = self.f.write(struct.pack(self.shortFmt, value)) self._verify_bytes_written(bytes_written, 2) def writeLong(self, value: int) -> None: bytes_written = self.f.write(struct.pack(self.longFmt, value)) self._verify_bytes_written(bytes_written, 4) def close(self) -> None: self.finalize() if self.close_fp: self.f.close() def fixIFD(self) -> None: num_tags = self.readShort() for i in range(num_tags): tag, field_type, count = struct.unpack(self.tagFormat, self.f.read(8)) field_size = self.fieldSizes[field_type] total_size = field_size * count is_local = total_size <= 4 if not is_local: offset = self.readLong() + self.offsetOfNewPage self.rewriteLastLong(offset) if tag in self.Tags: cur_pos = self.f.tell() if is_local: self._fixOffsets(count, field_size) self.f.seek(cur_pos + 4) else: self.f.seek(offset) self._fixOffsets(count, field_size) self.f.seek(cur_pos) elif is_local: # skip the locally stored value that is not an offset self.f.seek(4, os.SEEK_CUR) def _fixOffsets(self, count: int, field_size: int) -> None: for i in range(count): offset = self._read(field_size) offset += self.offsetOfNewPage if field_size == 2 and offset >= 65536: # offset is now too large - we must convert shorts to longs if count != 1: msg = "not implemented" raise RuntimeError(msg) # XXX TODO # simple case - the offset is just one and therefore it is # local (not referenced with another offset) self.rewriteLastShortToLong(offset) self.f.seek(-10, os.SEEK_CUR) self.writeShort(TiffTags.LONG) # rewrite the type to LONG self.f.seek(8, os.SEEK_CUR) else: self._rewriteLast(offset, field_size) def fixOffsets( self, count: int, isShort: bool = False, isLong: bool = False ) -> None: if isShort: field_size = 2 elif isLong: field_size = 4 else: field_size = 0 return self._fixOffsets(count, field_size) def _save_all(im: Image.Image, fp: IO[bytes], filename: str | bytes) -> None: encoderinfo = im.encoderinfo.copy() encoderconfig = im.encoderconfig append_images = list(encoderinfo.get("append_images", [])) if not hasattr(im, "n_frames") and not append_images: return _save(im, fp, filename) cur_idx = im.tell() try: with AppendingTiffWriter(fp) as tf: for ims in [im] + append_images: ims.encoderinfo = encoderinfo ims.encoderconfig = encoderconfig if not hasattr(ims, "n_frames"): nfr = 1 else: nfr = ims.n_frames for idx in range(nfr): ims.seek(idx) ims.load() _save(ims, tf, filename) tf.newFrame() finally: im.seek(cur_idx) # # -------------------------------------------------------------------- # Register Image.register_open(TiffImageFile.format, TiffImageFile, _accept) Image.register_save(TiffImageFile.format, _save) Image.register_save_all(TiffImageFile.format, _save_all) Image.register_extensions(TiffImageFile.format, [".tif", ".tiff"]) Image.register_mime(TiffImageFile.format, "image/tiff")