# # The Python Imaging Library. # $Id$ # # standard image operations # # History: # 2001-10-20 fl Created # 2001-10-23 fl Added autocontrast operator # 2001-12-18 fl Added Kevin's fit operator # 2004-03-14 fl Fixed potential division by zero in equalize # 2005-05-05 fl Fixed equalize for low number of values # # Copyright (c) 2001-2004 by Secret Labs AB # Copyright (c) 2001-2004 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from __future__ import annotations import functools import operator import re from collections.abc import Sequence from typing import Protocol, cast from . import ExifTags, Image, ImagePalette # # helpers def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]: if isinstance(border, tuple): if len(border) == 2: left, top = right, bottom = border elif len(border) == 4: left, top, right, bottom = border else: left = top = right = bottom = border return left, top, right, bottom def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]: if isinstance(color, str): from . import ImageColor color = ImageColor.getcolor(color, mode) return color def _lut(image: Image.Image, lut: list[int]) -> Image.Image: if image.mode == "P": # FIXME: apply to lookup table, not image data msg = "mode P support coming soon" raise NotImplementedError(msg) elif image.mode in ("L", "RGB"): if image.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return image.point(lut) else: msg = f"not supported for mode {image.mode}" raise OSError(msg) # # actions def autocontrast( image: Image.Image, cutoff: float | tuple[float, float] = 0, ignore: int | Sequence[int] | None = None, mask: Image.Image | None = None, preserve_tone: bool = False, ) -> Image.Image: """ Maximize (normalize) image contrast. This function calculates a histogram of the input image (or mask region), removes ``cutoff`` percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: The percent to cut off from the histogram on the low and high ends. Either a tuple of (low, high), or a single number for both. :param ignore: The background pixel value (use None for no background). :param mask: Histogram used in contrast operation is computed using pixels within the mask. If no mask is given the entire image is used for histogram computation. :param preserve_tone: Preserve image tone in Photoshop-like style autocontrast. .. versionadded:: 8.2.0 :return: An image. """ if preserve_tone: histogram = image.convert("L").histogram(mask) else: histogram = image.histogram(mask) lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer : layer + 256] if ignore is not None: # get rid of outliers if isinstance(ignore, int): h[ignore] = 0 else: for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram if not isinstance(cutoff, tuple): cutoff = (cutoff, cutoff) # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = int(n * cutoff[0] // 100) for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the high end cut = int(n * cutoff[1] // 100) for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut) def colorize( image: Image.Image, black: str | tuple[int, ...], white: str | tuple[int, ...], mid: str | int | tuple[int, ...] | None = None, blackpoint: int = 0, whitepoint: int = 255, midpoint: int = 127, ) -> Image.Image: """ Colorize grayscale image. This function calculates a color wedge which maps all black pixels in the source image to the first color and all white pixels to the second color. If ``mid`` is specified, it uses three-color mapping. The ``black`` and ``white`` arguments should be RGB tuples or color names; optionally you can use three-color mapping by also specifying ``mid``. Mapping positions for any of the colors can be specified (e.g. ``blackpoint``), where these parameters are the integer value corresponding to where the corresponding color should be mapped. These parameters must have logical order, such that ``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified). :param image: The image to colorize. :param black: The color to use for black input pixels. :param white: The color to use for white input pixels. :param mid: The color to use for midtone input pixels. :param blackpoint: an int value [0, 255] for the black mapping. :param whitepoint: an int value [0, 255] for the white mapping. :param midpoint: an int value [0, 255] for the midtone mapping. :return: An image. """ # Initial asserts assert image.mode == "L" if mid is None: assert 0 <= blackpoint <= whitepoint <= 255 else: assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 # Define colors from arguments rgb_black = cast(Sequence[int], _color(black, "RGB")) rgb_white = cast(Sequence[int], _color(white, "RGB")) rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None # Empty lists for the mapping red = [] green = [] blue = [] # Create the low-end values for i in range(0, blackpoint): red.append(rgb_black[0]) green.append(rgb_black[1]) blue.append(rgb_black[2]) # Create the mapping (2-color) if rgb_mid is None: range_map = range(0, whitepoint - blackpoint) for i in range_map: red.append( rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map) ) green.append( rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map) ) blue.append( rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map) ) # Create the mapping (3-color) else: range_map1 = range(0, midpoint - blackpoint) range_map2 = range(0, whitepoint - midpoint) for i in range_map1: red.append( rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1) ) green.append( rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1) ) blue.append( rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1) ) for i in range_map2: red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2)) green.append( rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2) ) blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2)) # Create the high-end values for i in range(0, 256 - whitepoint): red.append(rgb_white[0]) green.append(rgb_white[1]) blue.append(rgb_white[2]) # Return converted image image = image.convert("RGB") return _lut(image, red + green + blue) def contain( image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC ) -> Image.Image: """ Returns a resized version of the image, set to the maximum width and height within the requested size, while maintaining the original aspect ratio. :param image: The image to resize. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: Resampling method to use. Default is :py:attr:`~PIL.Image.Resampling.BICUBIC`. See :ref:`concept-filters`. :return: An image. """ im_ratio = image.width / image.height dest_ratio = size[0] / size[1] if im_ratio != dest_ratio: if im_ratio > dest_ratio: new_height = round(image.height / image.width * size[0]) if new_height != size[1]: size = (size[0], new_height) else: new_width = round(image.width / image.height * size[1]) if new_width != size[0]: size = (new_width, size[1]) return image.resize(size, resample=method) def cover( image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC ) -> Image.Image: """ Returns a resized version of the image, so that the requested size is covered, while maintaining the original aspect ratio. :param image: The image to resize. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: Resampling method to use. Default is :py:attr:`~PIL.Image.Resampling.BICUBIC`. See :ref:`concept-filters`. :return: An image. """ im_ratio = image.width / image.height dest_ratio = size[0] / size[1] if im_ratio != dest_ratio: if im_ratio < dest_ratio: new_height = round(image.height / image.width * size[0]) if new_height != size[1]: size = (size[0], new_height) else: new_width = round(image.width / image.height * size[1]) if new_width != size[0]: size = (new_width, size[1]) return image.resize(size, resample=method) def pad( image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC, color: str | int | tuple[int, ...] | None = None, centering: tuple[float, float] = (0.5, 0.5), ) -> Image.Image: """ Returns a resized and padded version of the image, expanded to fill the requested aspect ratio and size. :param image: The image to resize and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: Resampling method to use. Default is :py:attr:`~PIL.Image.Resampling.BICUBIC`. See :ref:`concept-filters`. :param color: The background color of the padded image. :param centering: Control the position of the original image within the padded version. (0.5, 0.5) will keep the image centered (0, 0) will keep the image aligned to the top left (1, 1) will keep the image aligned to the bottom right :return: An image. """ resized = contain(image, size, method) if resized.size == size: out = resized else: out = Image.new(image.mode, size, color) if resized.palette: palette = resized.getpalette() if palette is not None: out.putpalette(palette) if resized.width != size[0]: x = round((size[0] - resized.width) * max(0, min(centering[0], 1))) out.paste(resized, (x, 0)) else: y = round((size[1] - resized.height) * max(0, min(centering[1], 1))) out.paste(resized, (0, y)) return out def crop(image: Image.Image, border: int = 0) -> Image.Image: """ Remove border from image. The same amount of pixels are removed from all four sides. This function works on all image modes. .. seealso:: :py:meth:`~PIL.Image.Image.crop` :param image: The image to crop. :param border: The number of pixels to remove. :return: An image. """ left, top, right, bottom = _border(border) return image.crop((left, top, image.size[0] - right, image.size[1] - bottom)) def scale( image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC ) -> Image.Image: """ Returns a rescaled image by a specific factor given in parameter. A factor greater than 1 expands the image, between 0 and 1 contracts the image. :param image: The image to rescale. :param factor: The expansion factor, as a float. :param resample: Resampling method to use. Default is :py:attr:`~PIL.Image.Resampling.BICUBIC`. See :ref:`concept-filters`. :returns: An :py:class:`~PIL.Image.Image` object. """ if factor == 1: return image.copy() elif factor <= 0: msg = "the factor must be greater than 0" raise ValueError(msg) else: size = (round(factor * image.width), round(factor * image.height)) return image.resize(size, resample) class SupportsGetMesh(Protocol): """ An object that supports the ``getmesh`` method, taking an image as an argument, and returning a list of tuples. Each tuple contains two tuples, the source box as a tuple of 4 integers, and a tuple of 8 integers for the final quadrilateral, in order of top left, bottom left, bottom right, top right. """ def getmesh( self, image: Image.Image ) -> list[ tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]] ]: ... def deform( image: Image.Image, deformer: SupportsGetMesh, resample: int = Image.Resampling.BILINEAR, ) -> Image.Image: """ Deform the image. :param image: The image to deform. :param deformer: A deformer object. Any object that implements a ``getmesh`` method can be used. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.transform function. :return: An image. """ return image.transform( image.size, Image.Transform.MESH, deformer.getmesh(image), resample ) def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image: """ Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create a uniform distribution of grayscale values in the output image. :param image: The image to equalize. :param mask: An optional mask. If given, only the pixels selected by the mask are included in the analysis. :return: An image. """ if image.mode == "P": image = image.convert("RGB") h = image.histogram(mask) lut = [] for b in range(0, len(h), 256): histo = [_f for _f in h[b : b + 256] if _f] if len(histo) <= 1: lut.extend(list(range(256))) else: step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 if not step: lut.extend(list(range(256))) else: n = step // 2 for i in range(256): lut.append(n // step) n = n + h[i + b] return _lut(image, lut) def expand( image: Image.Image, border: int | tuple[int, ...] = 0, fill: str | int | tuple[int, ...] = 0, ) -> Image.Image: """ Add border to the image :param image: The image to expand. :param border: Border width, in pixels. :param fill: Pixel fill value (a color value). Default is 0 (black). :return: An image. """ left, top, right, bottom = _border(border) width = left + image.size[0] + right height = top + image.size[1] + bottom color = _color(fill, image.mode) if image.palette: palette = ImagePalette.ImagePalette(palette=image.getpalette()) if isinstance(color, tuple) and (len(color) == 3 or len(color) == 4): color = palette.getcolor(color) else: palette = None out = Image.new(image.mode, (width, height), color) if palette: out.putpalette(palette.palette) out.paste(image, (left, top)) return out def fit( image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC, bleed: float = 0.0, centering: tuple[float, float] = (0.5, 0.5), ) -> Image.Image: """ Returns a resized and cropped version of the image, cropped to the requested aspect ratio and size. This function was contributed by Kevin Cazabon. :param image: The image to resize and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: Resampling method to use. Default is :py:attr:`~PIL.Image.Resampling.BICUBIC`. See :ref:`concept-filters`. :param bleed: Remove a border around the outside of the image from all four edges. The value is a decimal percentage (use 0.01 for one percent). The default value is 0 (no border). Cannot be greater than or equal to 0.5. :param centering: Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0, 0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left side, and if cropping the height take none from the top, and therefore all off the bottom). :return: An image. """ # by Kevin Cazabon, Feb 17/2000 # kevin@cazabon.com # https://www.cazabon.com centering_x, centering_y = centering if not 0.0 <= centering_x <= 1.0: centering_x = 0.5 if not 0.0 <= centering_y <= 1.0: centering_y = 0.5 if not 0.0 <= bleed < 0.5: bleed = 0.0 # calculate the area to use for resizing and cropping, subtracting # the 'bleed' around the edges # number of pixels to trim off on Top and Bottom, Left and Right bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) live_size = ( image.size[0] - bleed_pixels[0] * 2, image.size[1] - bleed_pixels[1] * 2, ) # calculate the aspect ratio of the live_size live_size_ratio = live_size[0] / live_size[1] # calculate the aspect ratio of the output image output_ratio = size[0] / size[1] # figure out if the sides or top/bottom will be cropped off if live_size_ratio == output_ratio: # live_size is already the needed ratio crop_width = live_size[0] crop_height = live_size[1] elif live_size_ratio >= output_ratio: # live_size is wider than what's needed, crop the sides crop_width = output_ratio * live_size[1] crop_height = live_size[1] else: # live_size is taller than what's needed, crop the top and bottom crop_width = live_size[0] crop_height = live_size[0] / output_ratio # make the crop crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) # resize the image and return it return image.resize(size, method, box=crop) def flip(image: Image.Image) -> Image.Image: """ Flip the image vertically (top to bottom). :param image: The image to flip. :return: An image. """ return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM) def grayscale(image: Image.Image) -> Image.Image: """ Convert the image to grayscale. :param image: The image to convert. :return: An image. """ return image.convert("L") def invert(image: Image.Image) -> Image.Image: """ Invert (negate) the image. :param image: The image to invert. :return: An image. """ lut = list(range(255, -1, -1)) return image.point(lut) if image.mode == "1" else _lut(image, lut) def mirror(image: Image.Image) -> Image.Image: """ Flip image horizontally (left to right). :param image: The image to mirror. :return: An image. """ return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT) def posterize(image: Image.Image, bits: int) -> Image.Image: """ Reduce the number of bits for each color channel. :param image: The image to posterize. :param bits: The number of bits to keep for each channel (1-8). :return: An image. """ mask = ~(2 ** (8 - bits) - 1) lut = [i & mask for i in range(256)] return _lut(image, lut) def solarize(image: Image.Image, threshold: int = 128) -> Image.Image: """ Invert all pixel values above a threshold. :param image: The image to solarize. :param threshold: All pixels above this grayscale level are inverted. :return: An image. """ lut = [] for i in range(256): if i < threshold: lut.append(i) else: lut.append(255 - i) return _lut(image, lut) def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None: """ If an image has an EXIF Orientation tag, other than 1, transpose the image accordingly, and remove the orientation data. :param image: The image to transpose. :param in_place: Boolean. Keyword-only argument. If ``True``, the original image is modified in-place, and ``None`` is returned. If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned with the transposition applied. If there is no transposition, a copy of the image will be returned. """ image.load() image_exif = image.getexif() orientation = image_exif.get(ExifTags.Base.Orientation, 1) method = { 2: Image.Transpose.FLIP_LEFT_RIGHT, 3: Image.Transpose.ROTATE_180, 4: Image.Transpose.FLIP_TOP_BOTTOM, 5: Image.Transpose.TRANSPOSE, 6: Image.Transpose.ROTATE_270, 7: Image.Transpose.TRANSVERSE, 8: Image.Transpose.ROTATE_90, }.get(orientation) if method is not None: transposed_image = image.transpose(method) if in_place: image.im = transposed_image.im image._size = transposed_image._size exif_image = image if in_place else transposed_image exif = exif_image.getexif() if ExifTags.Base.Orientation in exif: del exif[ExifTags.Base.Orientation] if "exif" in exif_image.info: exif_image.info["exif"] = exif.tobytes() elif "Raw profile type exif" in exif_image.info: exif_image.info["Raw profile type exif"] = exif.tobytes().hex() for key in ("XML:com.adobe.xmp", "xmp"): if key in exif_image.info: for pattern in ( r'tiff:Orientation="([0-9])"', r"([0-9])", ): value = exif_image.info[key] exif_image.info[key] = ( re.sub(pattern, "", value) if isinstance(value, str) else re.sub(pattern.encode(), b"", value) ) if not in_place: return transposed_image elif not in_place: return image.copy() return None